Fashioning Tech
  • Home
  • Fashion
    • Fashion

      Kinetic Couture: Introducing the Butterfly Dress

      January 25, 2017

      Fashion

      Kate Spade Brings Whimsy to Wearables

      August 29, 2016

      Fashion

      Aerochromics: Pollution Monitoring Garments Aim to Become A Sixth Skin

      August 17, 2016

      Fashion

      ‎BODYSONG‬./Glitchaus GLITCHJK Jacquard Bomber Jacket

      February 27, 2016

      Fashion

      3D Print and the Jewellery Industry: An Overview

      December 11, 2015

  • Fitness
    • Fitness

      Biomimicry and Sports Apparel

      August 15, 2016

      Fitness

      Bring A Little Bling To Your Workout with Misfit’s Solar-Powered Activity Trackers Made From Swarovski Crystals

      January 6, 2015

      Fitness

      Wearables in Contemporary Ballet

      November 18, 2014

      Fitness

      Fibers Software Transforms Your Fuelband Data into Art

      August 19, 2014

      Fitness

      Adidas Reissues Micropacer OG

      August 14, 2014

  • Healthcare
    • Healthcare

      Fashionable therapy brightens winter SADness

      July 30, 2015

      Healthcare

      Lightwear: An Exploration in Wearable Light Therapy for Seasonal Affective Disorder

      February 4, 2015

      Healthcare

      Vigour — A Gorgeous Wearable For Rehabilitation and Physical Therapy

      December 18, 2014

      Healthcare

      Space: What to wear?

      June 7, 2014

      Healthcare

      E-textile Pillow for Communication Between Dementia Patients and Family

      November 5, 2013

  • Wearables UX
    • Wearables UX

      Moff: Wearable Smart Toy For Kids

      August 21, 2014

      Wearables UX

      Temporary NFC Tattoo

      July 29, 2014

      Wearables UX

      Wearable Tech Guide to SXSW

      March 7, 2014

      Wearables UX

      PixMob’s LED beanies light up the SuperBowl by turning the crowd into human pixels

      February 3, 2014

      Wearables UX

      Cadbury Joy Jackets

      January 16, 2014

  • Interviews
    • Interviews

      Interview with Davide Vigano of Heapsylon

      April 30, 2014

      Interviews

      Make It Wearable Video Series by Creators Project

      April 3, 2014

      Interviews

      Interview with Sparkfun’s Dia Campbell

      March 26, 2014

      Interviews

      Interview with Julia Koerner

      March 20, 2014

      Interviews

      Interview with Akseli Reho from Clothing Plus

      March 17, 2014

  • Materials
    • Materials

      Conductive Tattoos Turn Your Skin Into An Interface

      August 24, 2016

      Materials

      Biofabrication: The New Revolution in Material Design

      August 23, 2016

      Materials

      Aerochromics: Pollution Monitoring Garments Aim to Become A Sixth Skin

      August 17, 2016

      Materials

      Biomimicry and Sports Apparel

      August 15, 2016

      Materials

      Smart Fabrics Conference May 11 – 13

      April 27, 2015

  • DIY
    • DIY

      Techno Textiles – Concordia University

      January 18, 2016

      DIY

      Smart Fabrics + Wearable Technology 2015 Review

      July 8, 2015

      DIY

      Explore and Learn from the Students of the Wearables Class at CCA

      April 19, 2015

      DIY

      Make It Wearable Winners

      November 4, 2014

      DIY

      JPG Data Knit Blanket Series from Glitchaus

      September 22, 2014

  • About

Fashioning Tech

for fashion futurists & wearable tech enthusiasts

  • Home
  • Fashion
    • Fashion

      Kinetic Couture: Introducing the Butterfly Dress

      January 25, 2017

      Fashion

      Kate Spade Brings Whimsy to Wearables

      August 29, 2016

      Fashion

      Aerochromics: Pollution Monitoring Garments Aim to Become A Sixth Skin

      August 17, 2016

      Fashion

      ‎BODYSONG‬./Glitchaus GLITCHJK Jacquard Bomber Jacket

      February 27, 2016

      Fashion

      3D Print and the Jewellery Industry: An Overview

      December 11, 2015

  • Fitness
    • Fitness

      Biomimicry and Sports Apparel

      August 15, 2016

      Fitness

      Bring A Little Bling To Your Workout with Misfit’s Solar-Powered Activity Trackers Made From Swarovski Crystals

      January 6, 2015

      Fitness

      Wearables in Contemporary Ballet

      November 18, 2014

      Fitness

      Fibers Software Transforms Your Fuelband Data into Art

      August 19, 2014

      Fitness

      Adidas Reissues Micropacer OG

      August 14, 2014

  • Healthcare
    • Healthcare

      Fashionable therapy brightens winter SADness

      July 30, 2015

      Healthcare

      Lightwear: An Exploration in Wearable Light Therapy for Seasonal Affective Disorder

      February 4, 2015

      Healthcare

      Vigour — A Gorgeous Wearable For Rehabilitation and Physical Therapy

      December 18, 2014

      Healthcare

      Space: What to wear?

      June 7, 2014

      Healthcare

      E-textile Pillow for Communication Between Dementia Patients and Family

      November 5, 2013

  • Wearables UX
    • Wearables UX

      Moff: Wearable Smart Toy For Kids

      August 21, 2014

      Wearables UX

      Temporary NFC Tattoo

      July 29, 2014

      Wearables UX

      Wearable Tech Guide to SXSW

      March 7, 2014

      Wearables UX

      PixMob’s LED beanies light up the SuperBowl by turning the crowd into human pixels

      February 3, 2014

      Wearables UX

      Cadbury Joy Jackets

      January 16, 2014

  • Interviews
    • Interviews

      Interview with Davide Vigano of Heapsylon

      April 30, 2014

      Interviews

      Make It Wearable Video Series by Creators Project

      April 3, 2014

      Interviews

      Interview with Sparkfun’s Dia Campbell

      March 26, 2014

      Interviews

      Interview with Julia Koerner

      March 20, 2014

      Interviews

      Interview with Akseli Reho from Clothing Plus

      March 17, 2014

  • Materials
    • Materials

      Conductive Tattoos Turn Your Skin Into An Interface

      August 24, 2016

      Materials

      Biofabrication: The New Revolution in Material Design

      August 23, 2016

      Materials

      Aerochromics: Pollution Monitoring Garments Aim to Become A Sixth Skin

      August 17, 2016

      Materials

      Biomimicry and Sports Apparel

      August 15, 2016

      Materials

      Smart Fabrics Conference May 11 – 13

      April 27, 2015

  • DIY
    • DIY

      Techno Textiles – Concordia University

      January 18, 2016

      DIY

      Smart Fabrics + Wearable Technology 2015 Review

      July 8, 2015

      DIY

      Explore and Learn from the Students of the Wearables Class at CCA

      April 19, 2015

      DIY

      Make It Wearable Winners

      November 4, 2014

      DIY

      JPG Data Knit Blanket Series from Glitchaus

      September 22, 2014

  • About
Uncategorized

Cutout Circuit Board

written by FashioningTech Contributor June 8, 2009

Just a repost of my previously posted fabmoment. Latest touchpad version For a project at the V2_lab we had to develop a transparent touchpad in textile. For this we needed to create circuit boards that are thin, small, easy to mount on a textile substrate and more or less flexible. To create such a circuit board we started to experiment with cutting copper foil on the CAMM-1 at Protospace fablab. Latest touchpad version

Design

The cutting of circuits in copper foil turns out to be very doable but some extra care when designing the board is needed.

No vias

This speaks for itself. A work around is to use WireWrap wire to make wire bridges.

Corners should be rounded

Copper foil does not stretch as the vinyl does. Because of this if the corners are too sharp it is possible the rotation of the knife lifts the copper from its backing. This might cause problems if you have dense packaging and/or small traces.

Minimal 0.6 mm space (degrades quickly when blade gets blunt)

After some experimentation we found that the minimal space between cuts is ~0.7 to 0.6 mm. This can be lifted a bit as long as the amount of cuts is limited and cutting speed is very slow. This also depends on the foil brand, sharpness of the knife, knife force etc.. It is good practice to cut a test before cutting the rest to fine tune the settings. Spacing tests On above picture it is very clear what happens if spacing is too small.

Don’t do tight packaging

If the circuit board needs to be flexible don’t package the components too tightly. The solder joints are the most susceptible to mechanical stress. If the traces are longer they can take much of the stress away that would otherwise work on the joints.

Component sizes

As far as component sizes concern anything smaller than 0805 and SOIC would be pushing it. Even if it can be cut soldering it will be practically impossible as the traces are able to move. We used 1205 packages to be on the safe side; there is enough space for a bit of movement. We did our board design in CadSoft Eagle and exported as a bitmap with all layers turned off except Top, Pads en tStop. Board layout Board design The bitmap was then imported into Adobe Illustrator, scaled to its actual size (this has to be done very accurately) and paths drawn over the traces. It is now very easy to adjust the sizes, round the cornes and do some more tweaking that might need to be done. Only keep in mind that the pad distances stay the same and are accurately aligned. The last step is to outline all paths (Object -> Path -> Outline stroke) and merge all shapes that form a single path using the Pathfinder’s ‘add to shape area’ tool. Inversely to create holes use the ‘subtract from shape area’ tool. Board outline Board outline ready to be cut.

Cutting

For cutting the circuit we use Cutronic copper foil (http://fablab.waag.org/content/techsoft). This is an A4 size copper foil with an adhesive backlayer. It is specially made for this type of usage (although they don’t advise to do SMT with it 😉 ). Cutting the foil needs some different settings of the CAMM-1.

Pen Force

Should be set somewhere between 60 to 80 gf. This also depends on the shape the knife is in and the type of foil used. Experimet with the build in test pattern before proceeding. Cuts should be well through the foil but only make a little schratch in the backing. If it cuts through the backing force is way too high. If it does not scratch the backing sometimes it won’t cut through the foil meaning more rework afterwards.

Speed

This should be set to quite a low value, 1cm/s is the slowest and recommended for complicated designs with tight packing. It also gives some time to push back little pieces that came loose with some fine tweezers.

Blade

The amount the blade should stick out depends on the foil used. For the Cutronic foil somewhere near ~1mm gives good results. It is recommended to use the original Roland blades as they are expensive but harder than the cheaper blades and will last longer. The blade originally supplied with the CAMM-1, the ZEC-A1005, is quite suitable for cutting copper foil. See the attached pdf for an overview of CAMM-1 blades. Cutout circuit board A cutout circuit board, left ready to be soldered (after tidying the little corner on the left), right as it comes out of the CAMM-1.

Soldering

First thing to do is peel of the excess copper so only the circuit itself is on the backing paper. Soldering can be done while the circuit is still on the paper, it will get a bit yellowish but won’t burn or melt. One thing to watch out for is the glue loosing adhesive strength when heated (it will stick like before when cooled down). This can make soldering a bit tricky. Loose pads will try to stick onto the soldering iron so great care and thinking about soldering order is needed. Also a set of very fine (SMT) tweezers which are anti-magnetic is a must. When all that is kept in mind, with a bit of practice, soldering on the foil is surprisingly easy. Finished board Finished board (black blobs are carbonized glue, grey wires are conductive threads) Some components which have very tiny leads (like SOD diodes) will have to be reinforced as the leads will break from the package under stress. We used some drops of polyurethane glue to do the job (the blobs on the left and right in above picture). Only use small drops as it will expand. With a little penknife, tweezers and care it is fairly easy to remove the circuit as a whole from its backing. Carefully slide the knife under the circuit bit by bit while holding it with the tweezers until the whole circuit comes off. The circuit can now be stuck on something else; textile in our case (see for example our first flexible circuit on felt test)

End result

The end result was a transparent flexible touchpad. The circuits have been connected using conductive thread and carbonized glue. TouchpadTouchpad Almost finished touchpad Due to the limitations mentioned above we could not cut the A/D board as the A/D chip has a TSOP-16 outline which is too small to cut. As a compromise we etched it on a very thin epoxy board.

Cutout Circuit Board was last modified: June 8th, 2009 by FashioningTech Contributor
0 comment
0
Facebook Twitter Google + Pinterest
FashioningTech Contributor

previous post
Fascinating Fastenings – YKK Fastening Awards
next post
Electronic Wearables Workshop at Mediamatic

You may also like

Oooglow

Brazilian Bikini – Prepare to Look Hot at a Pool Party

Design Your Own Toy

Electronic Wearables Workshop at Mediamatic

!! intersting to know

Me

SIAT Body Interface Showcase at IDMAa 2010

Visit my Blog http://karinasiegmund.com/poeticrealismblog/

New Guest Blogger: Joanne Hodge

“ONDULE” by Mattis Ensault

Leave a Comment Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

  • Facebook
  • Twitter
  • Linkedin
  • Youtube
  • Email
Footer Logo

© 2016 Fashionging Tech. All rights reserved.


Back To Top